

Data Structures and
Algorithms in Java™

Sixth Edition

Michael T. Goodrich
Department of Computer Science
University of California, Irvine

Roberto Tamassia
Department of Computer Science

Brown University

Michael H. Goldwasser
Department of Mathematics and Computer Science

Saint Louis University

Vice President and Executive Publisher Don Fowley

Executive Editor Beth Lang Golub

Assistant Marketing Manager Debbie Martin
Sponsoring Editor Mary O’Sullivan

Project Editor Ellen Keohane

Associate Production Manager Joyce Poh
Cover Designer Kenji Ngieng

This book was set in LATEX by the authors, and printed and bound by RR Donnelley. The
cover was printed by RR Donnelley.

Trademark Acknowledgments: Java is a trademark of Oracle Corporation. Unix® is a

registered trademark in the United States and other countries, licensed through X/Open

Company, Ltd. PowerPoint® is a trademark of Microsoft Corporation. All other product

names mentioned herein are the trademarks of their respective owners.

This book is printed on acid free paper.

Founded in 1807, John Wiley & Sons, Inc. has been a valued source of knowledge and

understanding for more than 200 years, helping people around the world meet their needs
and fulfill their aspirations. Our company is built on a foundation of principles that include

responsibility to the communities we serve and where we live and work. In 2008, we
launched a Corporate Citizenship Initiative, a global effort to address the environmental,

social, economic, and ethical challenges we face in our business. Among the issues we

are addressing are carbon impact, paper specifications and procurement, ethical conduct
within our business and among our vendors, and community and charitable support. For

more information, please visit our website: www.wiley.com/go/citizenship.

Copyright © 2014, 2010 John Wiley & Sons, Inc. All rights reserved. No part of this publi-
cation may be reproduced, stored in a retrieval system or transmitted in any form or by any

means, electronic, mechanical, photocopying, recording, scanning or otherwise, except
as permitted under Sections 107 or 108 of the 1976 United States Copyright Act, with-

out either the prior written permission of the Publisher, or authorization through payment

of the appropriate per-copy fee to the Copyright Clearance Center, Inc. 222 Rosewood
Drive, Danvers, MA 01923, website www.copyright.com. Requests to the Publisher for

permission should be addressed to the Permissions Department, John Wiley & Sons, Inc.,

111 River Street, Hoboken, NJ 07030-5774, (201) 748-6011, fax (201) 748-6008, website
http://www.wiley.com/go/ permissions.

Evaluation copies are provided to qualified academics and professionals for review pur-
poses only, for use in their courses during the next academic year. These copies are licensed

and may not be sold or transferred to a third party. Upon completion of the review period,

please return the evaluation copy to Wiley. Return instructions and a free of charge return
mailing label are available at www.wiley.com/go/returnlabel. If you have chosen to adopt

this textbook for use in your course, please accept this book as your complimentary desk

copy. Outside of the United States, please contact your local sales representative.

ISBN: 978-1-118-77133-4 (paperback)

Printed in the United States of America

10 9 8 7 6 5 4 3 2 1

http://www.wiley.com/go/citizenship
http://www.copyright.com
http://www.wiley.com/go/
http://www.wiley.com/go/returnlabel

To Karen, Paul, Anna, and Jack
– Michael T. Goodrich

To Isabel
– Roberto Tamassia

To Susan, Calista, and Maya
– Michael H. Goldwasser

Preface to the Sixth Edition

Data Structures and Algorithms in Java provides an introduction to data structures

and algorithms, including their design, analysis, and implementation. The major

changes in this sixth edition include the following:

• We redesigned the entire code base to increase clarity of presentation and

consistency in style and convention, including reliance on type inference, as

introduced in Java 7, to reduce clutter when instantiating generic types.

• We added 38 new figures, and redesigned 144 existing figures.

• We revised and expanded exercises, bringing the grand total to 794 exercises!

We continue our approach of dividing them into reinforcement, creativity,

and project exercises. However, we have chosen not to reset the number-

ing scheme with each new category, thereby avoiding possible ambiguity

between exercises such as R-7.5, C-7.5, P-7.5.

• The introductory chapters contain additional examples of classes and inheri-

tance, increased discussion of Java’s generics framework, and expanded cov-

erage of cloning and equivalence testing in the context of data structures.

• A new chapter, dedicated to the topic of recursion, provides comprehensive

coverage of material that was previously divided within Chapters 3, 4, and

9 of the fifth edition, while newly introducing the use of recursion when

processing file systems.

• We provide a new empirical study of the efficiency of Java’s StringBuilder
class relative to the repeated concatenation of strings, and then discuss the

theoretical underpinnings of its amortized performance.

• We provide increased discussion of iterators, contrasting between so-called

lazy iterators and snapshot iterators, with examples of both styles of imple-

mentation for several data structures.

• We have increased the use of abstract base classes to reduce redundancy

when providing multiple implementations of a common interface, and the

use of nested classes to provide greater encapsulation for our data structures.

• We have included complete Java implementations for many data structures

and algorithms that were only described with pseudocode in earlier editions.

These new implementations include both array-based and linked-list-based

queue implementations, a heap-based adaptable priority queue, a bottom-up

heap construction, hash tables with either separate chaining or linear probing,

splay trees, dynamic programming for the least-common subsequence prob-

lem, a union-find data structure with path compression, breadth-first search

of a graph, the Floyd-Warshall algorithm for computing a graph’s transitive

closure, topological sorting of a DAG, and both the Prim-Jarńık and Kruskal

algorithms for computing a minimum spanning tree.

v

vi Preface

Prerequisites

We assume that the reader is at least vaguely familiar with a high-level program-

ming language, such as C, C++, Python, or Java, and that he or she understands the

main constructs from such a high-level language, including:

• Variables and expressions

• Methods (also known as functions or procedures)

• Decision structures (such as if-statements and switch-statements)

• Iteration structures (for-loops and while-loops)

For readers who are familiar with these concepts, but not with how they are ex-

pressed in Java, we provide a primer on the Java language in Chapter 1. Still, this

book is primarily a data structures book, not a Java book; hence, it does not provide

a comprehensive treatment of Java. Nevertheless, we do not assume that the reader

is necessarily familiar with object-oriented design or with linked structures, such

as linked lists, for these topics are covered in the core chapters of this book.

In terms of mathematical background, we assume the reader is somewhat famil-

iar with topics from high-school mathematics. Even so, in Chapter 4, we discuss

the seven most-important functions for algorithm analysis. In fact, sections that use

something other than one of these seven functions are considered optional, and are

indicated with a star (⋆).

Online Resources

This book is accompanied by an extensive set of online resources, which can be

found at the following website:

www.wiley.com/college/goodrich

Included on this website is a collection of educational aids that augment the topics

of this book, for both students and instructors. For all readers, and especially for

students, we include the following resources:

• All Java source code presented in this book

• An appendix of useful mathematical facts

• PDF handouts of PowerPoint slides (four-per-page)

• A study guide with hints to exercises, indexed by problem number

For instructors using this book, we include the following additional teaching aids:

• Solutions to hundreds of the book’s exercises

• Color versions of all figures and illustrations from the book

• Slides in PowerPoint and PDF (one-per-page) format

The slides are fully editable, so as to allow an instructor using this book full free-

dom in customizing his or her presentations.

http://www.wiley.com/college/goodrich

Preface vii

Use as a Textbook

The design and analysis of efficient data structures has long been recognized as a

core subject in computing. We feel that the central role of data structure design and

analysis in the curriculum is fully justified, given the importance of efficient data

structures and algorithms in most software systems, including the Web, operating

systems, databases, compilers, and scientific simulation systems.

This book is designed for use in a beginning-level data structures course, or

in an intermediate-level introduction to algorithms course. The chapters for this

book are organized to provide a pedagogical path that starts with the basics of Java

programming and object-oriented design. We then discuss concrete structures in-

cluding arrays and linked lists, and foundational techniques like algorithm analysis

and recursion. In the main portion of the book we present fundamental data struc-

tures and algorithms, concluding with a discussion of memory management. A

detailed table of contents follows this preface, beginning on page x.

To assist instructors in designing a course in the context of the IEEE/ACM

2013 Computing Curriculum, the following table describes curricular knowledge

units that are covered within this book.

Knowledge Unit Relevant Material

AL/Basic Analysis Chapter 4 and Sections 5.2 & 12.1.4

AL/Algorithmic Strategies
Sections 5.3.3, 12.1.1, 13.2.1, 13.4.2, 13.5,

14.6.2 & 14.7

AL/Fundamental Data Structures
and Algorithms

Sections 3.1.2, 5.1.3, 9.3, 9.4.1, 10.2, 11.1,
13.2, and Chapters 12 & 14

AL/Advanced Data Structures
Sections 7.2.1, 10.4, 11.2–11.6, 12.2.1, 13.3,

14.5.1 & 15.3

AR/Memory System Organization

and Architecture
Chapter 15

DS/Sets, Relations, and Functions Sections 9.2.2 & 10.5

DS/Proof Techniques Sections 4.4, 5.2, 7.2.3, 9.3.4 & 12.3.1

DS/Basics of Counting Sections 2.2.3, 6.2.2, 8.2.2 & 12.1.4.

DS/Graphs and Trees Chapters 8 and 14

DS/Discrete Probability Sections 3.1.3, 10.2, 10.4.2 & 12.2.1

PL/Object-Oriented Programming Chapter 2 and Sections 7.3, 9.5.1 & 11.2.1

SDF/Algorithms and Design Sections 2.1, 4.3 & 12.1.1

SDF/Fundamental Programming

Concepts
Chapters 1 & 5

SDF/Fundamental Data Structures Chapters 3 & 6, and Sections 1.3, 9.1 & 10.1

SDF/Developmental Methods Sections 1.9 & 2.4

SE/Software Design Section 2.1

Mapping the IEEE/ACM 2013 Computing Curriculum knowledge units to coverage

within this book.

viii Preface

About the Authors

Michael Goodrich received his Ph.D. in Computer Science from Purdue University

in 1987. He is currently a Chancellor’s Professor in the Department of Computer

Science at University of California, Irvine. Previously, he was a professor at Johns

Hopkins University. He is a Fulbright Scholar and a Fellow of the American As-

sociation for the Advancement of Science (AAAS), Association for Computing

Machinery (ACM), and Institute of Electrical and Electronics Engineers (IEEE).

He is a recipient of the IEEE Computer Society Technical Achievement Award,

the ACM Recognition of Service Award, and the Pond Award for Excellence in

Undergraduate Teaching.

Roberto Tamassia received his Ph.D. in Electrical and Computer Engineering

from the University of Illinois at Urbana–Champaign in 1988. He is the Plastech

Professor of Computer Science and the Chair of the Department of Computer Sci-

ence at Brown University. He is also the Director of Brown’s Center for Geometric

Computing. His research interests include information security, cryptography, anal-

ysis, design, and implementation of algorithms, graph drawing, and computational

geometry. He is a Fellow of the American Association for the Advancement of

Science (AAAS), Association for Computing Machinery (ACM) and Institute for

Electrical and Electronic Engineers (IEEE). He is a recipient of the IEEE Computer

Society Technical Achievement Award.

Michael Goldwasser received his Ph.D. in Computer Science from Stanford

University in 1997. He is currently Professor and Director of the Computer Science

program in the Department of Mathematics and Computer Science at Saint Louis

University. He was previously a faculty member in the Department of Computer

Science at Loyola University Chicago. His research interests focus on the design

and implementation of algorithms, having published work involving approximation

algorithms, online computation, computational biology, and computational geom-

etry. He is also active in the computer science education community.

Additional Books by These Authors

• Di Battista, Eades, Tamassia, and Tollis, Graph Drawing, Prentice Hall

• Goodrich, Tamassia, and Goldwasser, Data Structures and Algorithms in Python,

Wiley

• Goodrich, Tamassia, and Mount, Data Structures and Algorithms in C++, Wiley

• Goodrich and Tamassia, Algorithm Design: Foundations, Analysis, and Internet

Examples, Wiley

• Goodrich and Tamassia, Introduction to Computer Security, Addison-Wesley

• Goldwasser and Letscher, Object-Oriented Programming in Python, Prentice

Hall

Preface ix

Acknowledgments

There are so many individuals who have made contributions to the development of

this book over the past decade, it is difficult to name them all. We wish to reit-

erate our thanks to the many research collaborators and teaching assistants whose

feedback shaped the previous versions of this material. The benefits of those con-

tributions carry forward to this book.

For the sixth edition, we are indebted to the outside reviewers and readers for

their copious comments, emails, and constructive criticisms. We therefore thank the

following people for their comments and suggestions: Sameer O. Abufardeh (North

Dakota State University), Mary Boelk (Marquette University), Frederick Crabbe

(United States Naval Academy), Scot Drysdale (Dartmouth College), David Eisner,

Henry A. Etlinger (Rochester Institute of Technology), Chun-Hsi Huang (Univer-

sity of Connecticut), John Lasseter (Hobart and William Smith Colleges), Yupeng

Lin, Suely Oliveira (University of Iowa), Vincent van Oostrom (Utrecht Univer-

sity), Justus Piater (University of Innsbruck), Victor I. Shtern (Boston University),

Tim Soethout, and a number of additional anonymous reviewers.

There have been a number of friends and colleagues whose comments have led

to improvements in the text. We are particularly thankful to Erin Chambers, Karen

Goodrich, David Letscher, David Mount, and Ioannis Tollis for their insightful

comments. In addition, contributions by David Mount to the coverage of recursion

and to several figures are gratefully acknowledged.

We appreciate the wonderful team at Wiley, including our editor, Beth Lang

Golub, for her enthusiastic support of this project from beginning to end, and the

Product Solutions Group editors, Mary O’Sullivan and Ellen Keohane, for carrying

the project to its completion. The quality of this book is greatly enhanced as a result

of the attention to detail demonstrated by our copyeditor, Julie Kennedy. The final

months of the production process were gracefully managed by Joyce Poh.

Finally, we would like to warmly thank Karen Goodrich, Isabel Cruz, Susan

Goldwasser, Giuseppe Di Battista, Franco Preparata, Ioannis Tollis, and our parents

for providing advice, encouragement, and support at various stages of the prepa-

ration of this book, and Calista and Maya Goldwasser for offering their advice

regarding the artistic merits of many illustrations. More importantly, we thank all

of these people for reminding us that there are things in life beyond writing books.

Michael T. Goodrich

Roberto Tamassia

Michael H. Goldwasser

Contents
1 Java Primer 1

1.1 Getting Started . 2

1.1.1 Base Types . 4

1.2 Classes and Objects . 5

1.2.1 Creating and Using Objects . 6

1.2.2 Defining a Class . 9

1.3 Strings, Wrappers, Arrays, and Enum Types 17

1.4 Expressions . 23

1.4.1 Literals . 23

1.4.2 Operators . 24

1.4.3 Type Conversions . 28

1.5 Control Flow . 30

1.5.1 The If and Switch Statements 30

1.5.2 Loops . 33

1.5.3 Explicit Control-Flow Statements 37

1.6 Simple Input and Output . 38

1.7 An Example Program . 41

1.8 Packages and Imports . 44

1.9 Software Development . 46

1.9.1 Design . 46

1.9.2 Pseudocode . 48

1.9.3 Coding . 49

1.9.4 Documentation and Style . 50

1.9.5 Testing and Debugging . 53

1.10 Exercises . 55

2 Object-Oriented Design 59
2.1 Goals, Principles, and Patterns . 60

2.1.1 Object-Oriented Design Goals 60

2.1.2 Object-Oriented Design Principles 61

2.1.3 Design Patterns . 63

2.2 Inheritance . 64

2.2.1 Extending the CreditCard Class 65

2.2.2 Polymorphism and Dynamic Dispatch 68

2.2.3 Inheritance Hierarchies . 69

2.3 Interfaces and Abstract Classes . 76

2.3.1 Interfaces in Java . 76

2.3.2 Multiple Inheritance for Interfaces 79

2.3.3 Abstract Classes . 80

2.4 Exceptions . 82

2.4.1 Catching Exceptions . 82

2.4.2 Throwing Exceptions . 85

2.4.3 Java’s Exception Hierarchy . 86

2.5 Casting and Generics . 88

x

Contents xi

2.5.1 Casting . 88

2.5.2 Generics . 91

2.6 Nested Classes . 96

2.7 Exercises . 97

3 Fundamental Data Structures 103
3.1 Using Arrays . 104

3.1.1 Storing Game Entries in an Array 104

3.1.2 Sorting an Array . 110

3.1.3 java.util Methods for Arrays and Random Numbers 112

3.1.4 Simple Cryptography with Character Arrays 115

3.1.5 Two-Dimensional Arrays and Positional Games 118

3.2 Singly Linked Lists . 122

3.2.1 Implementing a Singly Linked List Class 126

3.3 Circularly Linked Lists . 128

3.3.1 Round-Robin Scheduling . 128

3.3.2 Designing and Implementing a Circularly Linked List 129

3.4 Doubly Linked Lists . 132

3.4.1 Implementing a Doubly Linked List Class 135

3.5 Equivalence Testing . 138

3.5.1 Equivalence Testing with Arrays 139

3.5.2 Equivalence Testing with Linked Lists 140

3.6 Cloning Data Structures . 141

3.6.1 Cloning Arrays . 142

3.6.2 Cloning Linked Lists . 144

3.7 Exercises . 145

4 Algorithm Analysis 149
4.1 Experimental Studies . 151

4.1.1 Moving Beyond Experimental Analysis 154

4.2 The Seven Functions Used in This Book 156

4.2.1 Comparing Growth Rates . 163

4.3 Asymptotic Analysis . 164

4.3.1 The “Big-Oh” Notation . 164

4.3.2 Comparative Analysis . 168

4.3.3 Examples of Algorithm Analysis 170

4.4 Simple Justification Techniques . 178

4.4.1 By Example . 178

4.4.2 The “Contra” Attack . 178

4.4.3 Induction and Loop Invariants 179

4.5 Exercises . 182

5 Recursion 189
5.1 Illustrative Examples . 191

5.1.1 The Factorial Function . 191

5.1.2 Drawing an English Ruler . 193

5.1.3 Binary Search . 196

xii Contents

5.1.4 File Systems . 198

5.2 Analyzing Recursive Algorithms . 202

5.3 Further Examples of Recursion . 206

5.3.1 Linear Recursion . 206

5.3.2 Binary Recursion . 211

5.3.3 Multiple Recursion . 212

5.4 Designing Recursive Algorithms . 214

5.5 Recursion Run Amok . 215

5.5.1 Maximum Recursive Depth in Java 218

5.6 Eliminating Tail Recursion . 219

5.7 Exercises . 221

6 Stacks, Queues, and Deques 225
6.1 Stacks . 226

6.1.1 The Stack Abstract Data Type 227

6.1.2 A Simple Array-Based Stack Implementation 230

6.1.3 Implementing a Stack with a Singly Linked List 233

6.1.4 Reversing an Array Using a Stack 234

6.1.5 Matching Parentheses and HTML Tags 235

6.2 Queues . 238

6.2.1 The Queue Abstract Data Type 239

6.2.2 Array-Based Queue Implementation 241

6.2.3 Implementing a Queue with a Singly Linked List 245

6.2.4 A Circular Queue . 246

6.3 Double-Ended Queues . 248

6.3.1 The Deque Abstract Data Type 248

6.3.2 Implementing a Deque . 250

6.3.3 Deques in the Java Collections Framework 251

6.4 Exercises . 252

7 List and Iterator ADTs 257
7.1 The List ADT . 258

7.2 Array Lists . 260

7.2.1 Dynamic Arrays . 263

7.2.2 Implementing a Dynamic Array 264

7.2.3 Amortized Analysis of Dynamic Arrays 265

7.2.4 Java’s StringBuilder class . 269

7.3 Positional Lists . 270

7.3.1 Positions . 272

7.3.2 The Positional List Abstract Data Type 272

7.3.3 Doubly Linked List Implementation 276

7.4 Iterators . 282

7.4.1 The Iterable Interface and Java’s For-Each Loop 283

7.4.2 Implementing Iterators . 284

7.5 The Java Collections Framework 288

7.5.1 List Iterators in Java . 289

7.5.2 Comparison to Our Positional List ADT 290

Contents xiii

7.5.3 List-Based Algorithms in the Java Collections Framework 291

7.6 Sorting a Positional List . 293

7.7 Case Study: Maintaining Access Frequencies 294

7.7.1 Using a Sorted List . 294

7.7.2 Using a List with the Move-to-Front Heuristic 297

7.8 Exercises . 300

8 Trees 307
8.1 General Trees . 308

8.1.1 Tree Definitions and Properties 309

8.1.2 The Tree Abstract Data Type 312

8.1.3 Computing Depth and Height 314

8.2 Binary Trees . 317

8.2.1 The Binary Tree Abstract Data Type 319

8.2.2 Properties of Binary Trees . 321

8.3 Implementing Trees . 323

8.3.1 Linked Structure for Binary Trees 323

8.3.2 Array-Based Representation of a Binary Tree 331

8.3.3 Linked Structure for General Trees 333

8.4 Tree Traversal Algorithms . 334

8.4.1 Preorder and Postorder Traversals of General Trees 334

8.4.2 Breadth-First Tree Traversal 336

8.4.3 Inorder Traversal of a Binary Tree 337

8.4.4 Implementing Tree Traversals in Java 339

8.4.5 Applications of Tree Traversals 343

8.4.6 Euler Tours . 348

8.5 Exercises . 350

9 Priority Queues 359
9.1 The Priority Queue Abstract Data Type 360

9.1.1 Priorities . 360

9.1.2 The Priority Queue ADT . 361

9.2 Implementing a Priority Queue . 362

9.2.1 The Entry Composite . 362

9.2.2 Comparing Keys with Total Orders 363

9.2.3 The AbstractPriorityQueue Base Class 364

9.2.4 Implementing a Priority Queue with an Unsorted List 366

9.2.5 Implementing a Priority Queue with a Sorted List 368

9.3 Heaps . 370

9.3.1 The Heap Data Structure . 370

9.3.2 Implementing a Priority Queue with a Heap 372

9.3.3 Analysis of a Heap-Based Priority Queue 379

9.3.4 Bottom-Up Heap Construction ⋆ 380

9.3.5 Using the java.util.PriorityQueue Class 384

9.4 Sorting with a Priority Queue . 385

9.4.1 Selection-Sort and Insertion-Sort 386

9.4.2 Heap-Sort . 388

xiv Contents

9.5 Adaptable Priority Queues . 390

9.5.1 Location-Aware Entries . 391

9.5.2 Implementing an Adaptable Priority Queue 392

9.6 Exercises . 395

10 Maps, Hash Tables, and Skip Lists 401
10.1 Maps . 402

10.1.1 The Map ADT . 403

10.1.2 Application: Counting Word Frequencies 405

10.1.3 An AbstractMap Base Class 406

10.1.4 A Simple Unsorted Map Implementation 408

10.2 Hash Tables . 410

10.2.1 Hash Functions . 411

10.2.2 Collision-Handling Schemes . 417

10.2.3 Load Factors, Rehashing, and Efficiency 420

10.2.4 Java Hash Table Implementation 422

10.3 Sorted Maps . 428

10.3.1 Sorted Search Tables . 429

10.3.2 Two Applications of Sorted Maps 433

10.4 Skip Lists . 436

10.4.1 Search and Update Operations in a Skip List 438

10.4.2 Probabilistic Analysis of Skip Lists ⋆ 442

10.5 Sets, Multisets, and Multimaps . 445

10.5.1 The Set ADT . 445

10.5.2 The Multiset ADT . 447

10.5.3 The Multimap ADT . 448

10.6 Exercises . 451

11 Search Trees 459
11.1 Binary Search Trees . 460

11.1.1 Searching Within a Binary Search Tree 461

11.1.2 Insertions and Deletions . 463

11.1.3 Java Implementation . 466

11.1.4 Performance of a Binary Search Tree 470

11.2 Balanced Search Trees . 472

11.2.1 Java Framework for Balancing Search Trees 475

11.3 AVL Trees . 479

11.3.1 Update Operations . 481

11.3.2 Java Implementation . 486

11.4 Splay Trees . 488

11.4.1 Splaying . 488

11.4.2 When to Splay . 492

11.4.3 Java Implementation . 494

11.4.4 Amortized Analysis of Splaying ⋆ 495

11.5 (2,4) Trees . 500

11.5.1 Multiway Search Trees . 500

11.5.2 (2,4)-Tree Operations . 503

Contents xv

11.6 Red-Black Trees . 510

11.6.1 Red-Black Tree Operations . 512

11.6.2 Java Implementation . 522

11.7 Exercises . 525

12 Sorting and Selection 531

12.1 Merge-Sort . 532

12.1.1 Divide-and-Conquer . 532

12.1.2 Array-Based Implementation of Merge-Sort 537

12.1.3 The Running Time of Merge-Sort 538

12.1.4 Merge-Sort and Recurrence Equations ⋆ 540

12.1.5 Alternative Implementations of Merge-Sort 541

12.2 Quick-Sort . 544

12.2.1 Randomized Quick-Sort . 551

12.2.2 Additional Optimizations for Quick-Sort 553

12.3 Studying Sorting through an Algorithmic Lens 556

12.3.1 Lower Bound for Sorting . 556

12.3.2 Linear-Time Sorting: Bucket-Sort and Radix-Sort 558

12.4 Comparing Sorting Algorithms . 561

12.5 Selection . 563

12.5.1 Prune-and-Search . 563

12.5.2 Randomized Quick-Select . 564

12.5.3 Analyzing Randomized Quick-Select 565

12.6 Exercises . 566

13 Text Processing 573

13.1 Abundance of Digitized Text . 574

13.1.1 Notations for Character Strings 575

13.2 Pattern-Matching Algorithms . 576

13.2.1 Brute Force . 576

13.2.2 The Boyer-Moore Algorithm 578

13.2.3 The Knuth-Morris-Pratt Algorithm 582

13.3 Tries . 586

13.3.1 Standard Tries . 586

13.3.2 Compressed Tries . 590

13.3.3 Suffix Tries . 592

13.3.4 Search Engine Indexing . 594

13.4 Text Compression and the Greedy Method 595

13.4.1 The Huffman Coding Algorithm 596

13.4.2 The Greedy Method . 597

13.5 Dynamic Programming . 598

13.5.1 Matrix Chain-Product . 598

13.5.2 DNA and Text Sequence Alignment 601

13.6 Exercises . 605

xvi Contents

14 Graph Algorithms 611
14.1 Graphs . 612

14.1.1 The Graph ADT . 618

14.2 Data Structures for Graphs . 619

14.2.1 Edge List Structure . 620

14.2.2 Adjacency List Structure . 622
14.2.3 Adjacency Map Structure . 624

14.2.4 Adjacency Matrix Structure . 625

14.2.5 Java Implementation . 626
14.3 Graph Traversals . 630

14.3.1 Depth-First Search . 631

14.3.2 DFS Implementation and Extensions 636
14.3.3 Breadth-First Search . 640

14.4 Transitive Closure . 643

14.5 Directed Acyclic Graphs . 647

14.5.1 Topological Ordering . 647

14.6 Shortest Paths . 651

14.6.1 Weighted Graphs . 651

14.6.2 Dijkstra’s Algorithm . 653

14.7 Minimum Spanning Trees . 662

14.7.1 Prim-Jarńık Algorithm . 664

14.7.2 Kruskal’s Algorithm . 667

14.7.3 Disjoint Partitions and Union-Find Structures 672
14.8 Exercises . 677

15 Memory Management and B-Trees 687
15.1 Memory Management . 688

15.1.1 Stacks in the Java Virtual Machine 688

15.1.2 Allocating Space in the Memory Heap 691
15.1.3 Garbage Collection . 693

15.2 Memory Hierarchies and Caching 695

15.2.1 Memory Systems . 695
15.2.2 Caching Strategies . 696

15.3 External Searching and B-Trees . 701

15.3.1 (a,b) Trees . 702
15.3.2 B-Trees . 704

15.4 External-Memory Sorting . 705

15.4.1 Multiway Merging . 706

15.5 Exercises . 707

Bibliography 710

Index 714

Useful Mathematical Facts available at www.wiley.com/college/goodrich

http://www.wiley.com/college/goodrich

Chapter

1 Java Primer

Contents

1.1 Getting Started . 2

1.1.1 Base Types . 4

1.2 Classes and Objects . 5

1.2.1 Creating and Using Objects 6

1.2.2 Defining a Class . 9

1.3 Strings, Wrappers, Arrays, and Enum Types 17

1.4 Expressions . 23

1.4.1 Literals . 23

1.4.2 Operators . 24

1.4.3 Type Conversions . 28

1.5 Control Flow . 30

1.5.1 The If and Switch Statements 30

1.5.2 Loops . 33

1.5.3 Explicit Control-Flow Statements 37

1.6 Simple Input and Output 38

1.7 An Example Program . 41

1.8 Packages and Imports . 44

1.9 Software Development . 46

1.9.1 Design . 46

1.9.2 Pseudocode . 48

1.9.3 Coding . 49

1.9.4 Documentation and Style 50

1.9.5 Testing and Debugging 53

1.10 Exercises . 55

2 Chapter 1. Java Primer

1.1 Getting Started

Building data structures and algorithms requires that we communicate detailed in-

structions to a computer. An excellent way to perform such communication is

using a high-level computer language, such as Java. In this chapter, we provide an

overview of the Java programming language, and we continue this discussion in the

next chapter, focusing on object-oriented design principles. We assume that readers

are somewhat familiar with an existing high-level language, although not necessar-

ily Java. This book does not provide a complete description of the Java language

(there are numerous language references for that purpose), but it does introduce all

aspects of the language that are used in code fragments later in this book.

We begin our Java primer with a program that prints “Hello Universe!” on the

screen, which is shown in a dissected form in Figure 1.1.

Figure 1.1: A “Hello Universe!” program.

In Java, executable statements are placed in functions, known as methods, that

belong to class definitions. The Universe class, in our first example, is extremely

simple; its only method is a static one named main, which is the first method to be

executed when running a Java program. Any set of statements between the braces

“{” and “}” define a program block. Notice that the entire Universe class definition

is delimited by such braces, as is the body of the main method.

The name of a class, method, or variable in Java is called an identifier, which

can be any string of characters as long as it begins with a letter and consists of let-

ters, numbers, and underscore characters (where “letter” and “number” can be from

any written language defined in the Unicode character set). We list the exceptions

to this general rule for Java identifiers in Table 1.1.

1.1. Getting Started 3

Reserved Words

abstract default goto package synchronized
assert do if private this
boolean double implements protected throw
break else import public throws
byte enum instanceof return transient
case extends int short true
catch false interface static try
char final long strictfp void
class finally native super volatile
const float new switch while
continue for null

Table 1.1: A listing of the reserved words in Java. These names cannot be used as

class, method, or variable names.

Comments

In addition to executable statements and declarations, Java allows a programmer

to embed comments, which are annotations provided for human readers that are

not processed by the Java compiler. Java allows two kinds of comments: inline

comments and block comments. Java uses a “//” to begin an inline comment,

ignoring everything subsequently on that line. For example:

// This is an inline comment.

We will intentionally color all comments in blue in this book, so that they are not

confused with executable code.

While inline comments are limited to one line, Java allows multiline comments

in the form of block comments. Java uses a “/*” to begin a block comment and a

“*/” to close it. For example:

/*
* This is a block comment.
*/

Block comments that begin with “/**” (note the second asterisk) have a special

purpose, allowing a program, called Javadoc, to read these comments and automat-

ically generate software documentation. We discuss the syntax and interpretation

of Javadoc comments in Section 1.9.4.

4 Chapter 1. Java Primer

1.1.1 Base Types

For the most commonly used data types, Java provides the following base types

(also called primitive types):

boolean a boolean value: true or false
char 16-bit Unicode character

byte 8-bit signed two’s complement integer

short 16-bit signed two’s complement integer

int 32-bit signed two’s complement integer

long 64-bit signed two’s complement integer

float 32-bit floating-point number (IEEE 754-1985)

double 64-bit floating-point number (IEEE 754-1985)

A variable having one of these types simply stores a value of that type. Integer

constants, like 14 or 195, are of type int, unless followed immediately by an ‘L’

or ‘l’, in which case they are of type long. Floating-point constants, like 3.1416

or 6.022e23, are of type double, unless followed immediately by an ‘F’ or ‘f’, in

which case they are of type float. Code Fragment 1.1 demonstrates the declaration,

and initialization in some cases, of various base-type variables.

1 boolean flag = true;
2 boolean verbose, debug; // two variables declared, but not yet initialized
3 char grade = 'A';
4 byte b = 12;
5 short s = 24;
6 int i, j, k = 257; // three variables declared; only k initialized
7 long l = 890L; // note the use of ”L” here
8 float pi = 3.1416F; // note the use of ”F” here
9 double e = 2.71828, a = 6.022e23; // both variables are initialized

Code Fragment 1.1: Declarations and initializations of several base-type variables.

Note that it is possible to declare (and initialize) multiple variables of the same

type in a single statement, as done on lines 2, 6, and 9 of this example. In this code

fragment, variables verbose, debug, i, and j remain uninitialized. Variables declared

locally within a block of code must be initialized before they are first used.

A nice feature of Java is that when base-type variables are declared as instance

variables of a class (see next section), Java ensures initial default values if not ex-

plicitly initialized. In particular, all numeric types are initialized to zero, a boolean

is initialized to false, and a character is initialized to the null character by default.

1.2. Classes and Objects 5

1.2 Classes and Objects

In more complex Java programs, the primary “actors” are objects. Every object is

an instance of a class, which serves as the type of the object and as a blueprint,

defining the data which the object stores and the methods for accessing and modi-

fying that data. The critical members of a class in Java are the following:

• Instance variables, which are also called fields, represent the data associated

with an object of a class. Instance variables must have a type, which can

either be a base type (such as int, float, or double) or any class type (also

known as a reference type for reasons we soon explain).

• Methods in Java are blocks of code that can be called to perform actions

(similar to functions and procedures in other high-level languages). Methods

can accept parameters as arguments, and their behavior may depend on the

object upon which they are invoked and the values of any parameters that are

passed. A method that returns information to the caller without changing any

instance variables is known as an accessor method, while an update method

is one that may change one or more instance variables when called.

For the purpose of illustration, Code Fragment 1.2 provides a complete def-

inition of a very simple class named Counter, to which we will refer during the

remainder of this section.

1 public class Counter {
2 private int count; // a simple integer instance variable
3 public Counter() { } // default constructor (count is 0)
4 public Counter(int initial) { count = initial; } // an alternate constructor
5 public int getCount() { return count; } // an accessor method
6 public void increment() { count++; } // an update method
7 public void increment(int delta) { count += delta; } // an update method
8 public void reset() { count = 0; } // an update method
9 }

Code Fragment 1.2: A Counter class for a simple counter, which can be queried,

incremented, and reset.

This class includes one instance variable, named count, which is declared at

line 2. As noted on the previous page, the count will have a default value of zero,

unless we otherwise initialize it.

The class includes two special methods known as constructors (lines 3 and

4), one accessor method (line 5), and three update methods (lines 6–8). Unlike

the original Universe class from page 2, our Counter class does not have a main
method, and so it cannot be run as a complete program. Instead, the purpose of the

Counter class is to create instances that might be used as part of a larger program.

6 Chapter 1. Java Primer

1.2.1 Creating and Using Objects

Before we explore the intricacies of the syntax for our Counter class definition, we

prefer to describe how Counter instances can be created and used. To this end,

Code Fragment 1.3 presents a new class named CounterDemo.

1 public class CounterDemo {
2 public static void main(String[] args) {
3 Counter c; // declares a variable; no counter yet constructed
4 c = new Counter(); // constructs a counter; assigns its reference to c
5 c.increment(); // increases its value by one
6 c.increment(3); // increases its value by three more
7 int temp = c.getCount(); // will be 4
8 c.reset(); // value becomes 0
9 Counter d = new Counter(5);// declares and constructs a counter having value 5

10 d.increment(); // value becomes 6
11 Counter e = d; // assigns e to reference the same object as d
12 temp = e.getCount(); // will be 6 (as e and d reference the same counter)
13 e.increment(2); // value of e (also known as d) becomes 8
14 }
15 }

Code Fragment 1.3: A demonstration of the use of Counter instances.

There is an important distinction in Java between the treatment of base-type

variables and class-type variables. At line 3 of our demonstration, a new variable c
is declared with the syntax:

Counter c;

This establishes the identifier, c, as a variable of type Counter, but it does not create

a Counter instance. Classes are known as reference types in Java, and a variable of

that type (such as c in our example) is known as a reference variable. A reference

variable is capable of storing the location (i.e., memory address) of an object from

the declared class. So we might assign it to reference an existing instance or a

newly constructed instance. A reference variable can also store a special value,

null, that represents the lack of an object.

In Java, a new object is created by using the new operator followed by a call to

a constructor for the desired class; a constructor is a method that always shares the

same name as its class. The new operator returns a reference to the newly created

instance; the returned reference is typically assigned to a variable for further use.

In Code Fragment 1.3, a new Counter is constructed at line 4, with its reference

assigned to the variable c. That relies on a form of the constructor, Counter(), that

takes no arguments between the parentheses. (Such a zero-parameter constructor

is known as a default constructor.) At line 9 we construct another counter using a

one-parameter form that allows us to specify a nonzero initial value for the counter.

1.2. Classes and Objects 7

Three events occur as part of the creation of a new instance of a class:

• A new object is dynamically allocated in memory, and all instance variables

are initialized to standard default values. The default values are null for

reference variables and 0 for all base types except boolean variables (which

are false by default).

• The constructor for the new object is called with the parameters specified.

The constructor may assign more meaningful values to any of the instance

variables, and perform any additional computations that must be done due to

the creation of this object.

• After the constructor returns, the new operator returns a reference (that is, a

memory address) to the newly created object. If the expression is in the form

of an assignment statement, then this address is stored in the object variable,

so the object variable refers to this newly created object.

The Dot Operator

One of the primary uses of an object reference variable is to access the members of

the class for this object, an instance of its class. That is, an object reference vari-

able is useful for accessing the methods and instance variables associated with an

object. This access is performed with the dot (“.”) operator. We call a method asso-

ciated with an object by using the reference variable name, following that by the dot

operator and then the method name and its parameters. For example, in Code Frag-

ment 1.3, we call c.increment() at line 5, c.increment(3) at line 6, c.getCount()
at line 7, and c.reset() at line 8. If the dot operator is used on a reference that is

currently null, the Java runtime environment will throw a NullPointerException.

If there are several methods with this same name defined for a class, then the

Java runtime system uses the one that matches the actual number of parameters

sent as arguments, as well as their respective types. For example, our Counter
class supports two methods named increment: a zero-parameter form and a one-

parameter form. Java determines which version to call when evaluating commands

such as c.increment() versus c.increment(3). A method’s name combined with the

number and types of its parameters is called a method’s signature, for it takes all

of these parts to determine the actual method to perform for a certain method call.

Note, however, that the signature of a method in Java does not include the type that

the method returns, so Java does not allow two methods with the same signature to

return different types.

A reference variable v can be viewed as a “pointer” to some object o. It is as if

the variable is a holder for a remote control that can be used to control the newly

created object (the device). That is, the variable has a way of pointing at the object

and asking it to do things or give us access to its data. We illustrate this concept in

Figure 1.2. Using the remote control analogy, a null reference is a remote control

holder that is empty.

8 Chapter 1. Java Primer

Figure 1.2: Illustrating the relationship between objects and object reference vari-

ables. When we assign an object reference (that is, memory address) to a reference

variable, it is as if we are storing that object’s remote control at that variable.

There can, in fact, be many references to the same object, and each reference to

a specific object can be used to call methods on that object. Such a situation would

correspond to our having many remote controls that all work on the same device.

Any of the remotes can be used to make a change to the device (like changing a

channel on a television). Note that if one remote control is used to change the

device, then the (single) object pointed to by all the remotes changes. Likewise, if

one object reference variable is used to change the state of the object, then its state

changes for all the references to it. This behavior comes from the fact that there are

many references, but they all point to the same object.

Returning to our CounterDemo example, the instance constructed at line 9 as

Counter d = new Counter(5);

is a distinct instance from the one identified as c. However, the command at line 11,

Counter e = d;

does not result in the construction of a new Counter instance. This declares a new

reference variable named e, and assigns that variable a reference to the existing

counter instance currently identified as d. At that point, both variables d and e are

aliases for the same object, and so the call to d.getCount() behaves just as would

e.getCount(). Similarly, the call to update method e.increment(2) is affecting the

same object identified by d.

It is worth noting, however, that the aliasing of two reference variables to the

same object is not permanent. At any point in time, we may reassign a reference

variable to a new instance, to a different existing instance, or to null.

1.2. Classes and Objects 9

1.2.2 Defining a Class

Thus far, we have provided definitions for two simple classes: the Universe class

on page 2 and the Counter class on page 5. At its core, a class definition is a block

of code, delimited by braces “{” and “}” , within which is included declarations of

instance variables and methods that are the members of the class. In this section,

we will undertake a deeper examination of class definitions in Java.

Modifiers

Immediately before the definition of a class, instance variable, or method in Java,

keywords known as modifiers can be placed to convey additional stipulations about

that definition.

Access Control Modifiers

The first set of modifiers we discuss are known as access control modifiers, as they

control the level of access (also known as visibility) that the defining class grants

to other classes in the context of a larger Java program. The ability to limit access

among classes supports a key principle of object-orientation known as encapsula-

tion (see Section 2.1). In general, the different access control modifiers and their

meaning are as follows:

• The public class modifier designates that all classes may access the defined

aspect. For example, line 1 of of Code Fragment 1.2 designates

public class Counter {
and therefore all other classes (such as CounterDemo) are allowed to con-

struct new instances of the Counter class, as well as to declare variables and

parameters of type Counter. In Java, each public class must be defined in a

separate file named classname.java, where “classname” is the name of the

class (for example, file Counter.java for the Counter class definition).

The designation of public access for a particular method of a class allows

any other class to make a call to that method. For example, line 5 of Code

Fragment 1.2 designates

public int getCount() { return count; }
which is why the CounterDemo class may call c.getCount().

If an instance variable is declared as public, dot notation can be used to di-

rectly access the variable by code in any other class that possesses a reference

to an instance of this class. For example, were the count variable of Counter
to be declared as public (which it is not), then the CounterDemo would be

allowed to read or modify that variable using a syntax such as c.count.

